skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Remigio, Raymond"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The origin of the tight scaling relation between the mass of supermassive black holes (SMBHs; MBH) and their host-galaxy properties remains unclear. Active galactic nuclei (AGNs) probe phases of ongoing SMBH growth and offer the only opportunity to measure MBH beyond the local Universe. However, determining an AGN's host galaxy's stellar velocity dispersion, σå, and its galaxy dynamical mass, Mdyn, is complicated by AGN contamination, aperture effects, and different host-galaxy morphologies. We select a sample of AGNs for which MBH has been independently determined to high accuracy by state-of-the-art techniques: dynamical modeling of the reverberation signal and spatially resolving the broad-line region with the Very Large Telescope Interferometer/GRAVITY. Using integral-field spectroscopic observations, we spatially map the host-galaxy stellar kinematics across the galaxy and bulge effective radii. We find that the dynamically hot component of galaxy disks correlates with MBH; however, the correlations are tightest for aperture-integrated σå measured across the bulge. Accounting for the different MBH distributions, we demonstrate—for the first time—that AGNs follow the same MBH–σ and MBH–M_bulge,dyn relations as quiescent galaxies. We confirm that the classical approach of determining the virial factor as a sample average, yielding log f = 0.65 +/- 0.18, is consistent with the average f from individual measurements. The similarity between the underlying scaling relations of AGNs and quiescent galaxies implies that the current AGN phase is too short to have altered black hole masses on a population level. These results strengthen the local calibration of f for measuring single-epoch MBH in the distant Universe. 
    more » « less
    Free, publicly-accessible full text available December 30, 2025
  2. Abstract We present high-resolution Keck Cosmic Web Imager and MUSE integral field unit spectroscopy of VV 114, a local IR-luminous merger undergoing a vigorous starburst and showing evidence of galactic-scale feedback. The high-resolution data allow for spectral deblending of the optical emission lines and reveal a broad emission line component (σbroad ∼ 100–300 km s−1) with line ratios and kinematics consistent with a mixture of ionization by stars and radiative shocks. The shock fraction (percentage of ionization due to shocks) in the high-velocity gas is anticorrelated with the projected surface number density of resolved star clusters, and we find that the radial density profiles around clusters are fit well by models of adiabatically expanding cluster winds driven by massive stellar winds and supernovae (SNe). The total kinetic power estimated from the cluster wind models matches the wind + SN mechanical energy deposition rate estimated from the soft-band X-ray luminosity, indicating that at least 70% of the shock luminosity in the galaxy is driven by the star clusters. Hubble Space Telescope narrowband near-IR imaging reveals embedded shocks in the dust-buried IR nucleus of VV 114E. Most of the shocked gas is blueshifted with respect to the quiescent medium, and there is a close spatial correspondence between the shock map and the Chandra soft-band X-ray image, implying the presence of a galactic superwind. The energy budget of the superwind is in close agreement with the total kinetic power of the cluster winds, confirming the superwind is driven by the starburst. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026
  3. Abstract In order to constrain the size of the optical continuum emission region in the dwarf Seyfert 1 galaxy NGC 4395 through reverberation mapping, we carried out high-cadence photometric monitoring in thegrizfilter bands on two consecutive nights in 2022 April using the four-channel MuSCAT3 camera on the Faulkes Telescope North at Haleakalā Observatory. Correlated variability across thegrizbands is clearly detected, and ther-,i-, andz-band light curves show lags of 7.72 1.09 + 1.01 , 14.16 1.25 + 1.22 , and 20.78 2.09 + 1.99 minutes with respect to thegband when measured using the full-duration light curves. When lags are measured for each night separately, the Night 2 data exhibit lower cross-correlation amplitudes and shorter lags than the Night 1 light curves. Using the full-duration lags, we find that the lag–wavelength relationship is consistent with theτ∝λ4/3dependence found for more luminous active galactic nuclei. Combining our results with continuum lags measured for other objects, the lag betweengandzband scales with optical continuum luminosity asτgz∝L0.56±0.05, similar to the scaling of broad-line region size with luminosity, reinforcing recent evidence that diffuse continuum emission from the broad-line region may contribute substantially to optical continuum variability and reverberation lags. 
    more » « less
  4. Abstract Photoionization modeling of active galactic nuclei (AGN) predicts that diffuse continuum (DC) emission from the broad-line region makes a substantial contribution to the total continuum emission from ultraviolet through near-infrared wavelengths. Evidence for this DC component is present in the strong Balmer jump feature in AGN spectra, and possibly from reverberation measurements that find longer lags than expected from disk emission alone. However, the Balmer jump region contains numerous blended emission features, making it difficult to isolate the DC emission strength. In contrast, the Paschen jump region near 8200 Å is relatively uncontaminated by other strong emission features. Here, we examine whether the Paschen jump can aid in constraining the DC contribution, using Hubble Space Telescope Space Telescope Imaging Spectrograph spectra of six nearby Seyfert 1 nuclei. The spectra appear smooth across the Paschen edge, and we find no evidence of a Paschen spectral break or jump in total flux. We fit multicomponent spectral models over the range 6800–9700 Å and find that the spectra can still be compatible with a significant DC contribution if the DC Paschen jump is offset by an opposite spectral break resulting from blended high-order Paschen emission lines. The fits imply DC contributions ranging from ∼10% to 50% at 8000 Å, but the fitting results are highly dependent on assumptions made about other model components. These degeneracies can potentially be alleviated by carrying out fits over a broader wavelength range, provided that models can accurately represent the disk continuum shape, Fe ii emission, high-order Balmer line emission, and other components. 
    more » « less